Mechanics Of Solids

Solved Numericals on Shear And Bending Moments


Q-1 For the state of plane stress shown, determine the maximum shearing stress when (a) σy = 20 MPa, (b) σy = 140 MPa. (Hint: Consider both in-plane and out-of-plane shearing stresses).



 (A σy = 20MPa

              Ïƒy = 20-80

                   Ïƒy =-60MPa

      

        (B)  σy =140MPa

              Ïƒy =140-80

                    Ïƒy =60MPa

 

Q-2 For the aluminium shaft show (G = 27 GPa), determine (a) the torque T which causes an angle of twist of 5°, (b) the angle of twist caused by the same torque T in a solid cylindrical shaft of the same length and cross-sectional area.



SOL:

PART – (a)

Given :-

 Length ( L ) = 1.2 m

                     =1200 mm

Angle of deflection (ø) = 5̊

Modulus of rigidity (g) = 27GPa = 27x10^9 N/㎡  

                                      = 27 x 10^3  N/m㎡  

Ø in radians = (5 x 3.14) /180

                    = 0.0872

Polar moment of inertia (Ip) = pi/32 [40^4 – 24^4 ]

                                              = 218644.48 mm^4

Now according to formula:

 T/Ip =CØ/L

 => T = ( 27 x 10^3  x 0.0872 x 218644.48) / 1.2 x  10^3 .

     = 428980.4698 Nmm

        = 428.980 Nm 

 

PART -  (b):

Given :-

Torque (T) = 428.980 Nm

L = 1.2 m

Outer radius (Ro) = 20 mm

Inner radius (Ri) = 12mm

Area of crossection (A) = 3.14 ( 20^2 – 12^2  ) 

                                       = 803.84 m

 Angle of twist = ?

For a solid cylinder of same crossectional Area

We have pi/4 x d^2 where d is the diameter of the solid cylinder.

 (3.14 x d^2 ) / 4 = 803.84

                   => d^2 = 1024

                   => d = 32

 So we have

428980.4698/6430.72 = 27 x 10^3  x Ø /1200

                                = 2.9648 radians


Ans :- 1. Torque = 428.980 Nm

           2. Angle of twist = 169.95̊ = 2.9648 radians


Q-3: Determine the torque T which causes a maximum shearing stress of 70 MPa in the steel cylindrical shaft shown.


SOL:

Given :-

Diameter (d) = 36 mm

Max. shaearing stress = 70 MPa = 70 x10^6  N/

= 70 N/m

Polar moment of inertia (I) = 3.14 /32 x 36^4  

Torque (T) = 70 x 164812.32/18

 => T = 640.936 kNmm

 

Q-4 Draw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum absolute value (a) of the shear, (b) of the bending moment.



SOL:

Calculating reactions:

Ra+Rb=68+(30x1.2)

Ra+Rb=68+36

Ra+Rb=108KN

Moment at point B:

Rax3.6=(68x1.2)+36(2.4+1.2/2)

Rax3.6=(68x1.2)+(30x3.6)

Ra=189.6/3.6

Ra=52.66 KN

Rb=108-52.66 KN

Rb=51.33 KN

(A) Shear Force :

At A (L.H.S)=0

(R.H.S)=52.66 kN

 At C (L.H.S)=52.66-(30x1.2)=16.66 KN

         (R.H.S)=16.66 KN

 D      (L.H.S)=16.66 KN

          (R.H.S)=16.66-68=-51.34 KN

 B        (L.H.S)= -51.34 KN

           (R.H.S)= -51.34+51.34=0

(B) The bending moment

A=0

C=(52.66x1.2)-(30x1.2x1.2/2)-(68x1.2)=40.008 KNm

D=51.34x1.2=61.608 KNm

B=0

 



Q-5  A beam AB 10 meters long has supports at its ends A and B. It carries a point load of 5 KN at 3 meters from A  and a point load of 7 KN from A  and UDL of 1 KN/m between the point loads. Draw SF and BMD diagrams for the beam.?


SOL:  Firstly , we will take the reactions that are:

        Here,the loading is symmetrical reaction at each support equals half the total.Therefore,

                            Va =Vb= 5+5+1x4/2

                                       = 7KN

SHEAR FORCE(S.F) ANALYSIS:

S.F at any section in AD =+7 KN

S.F at just on RHS of AD =+7 – 5 =+2 KN

S.F at just on LHS of E =-7+5=-2 KN

S.F at any section in EB = -7 KN

S.F at centre C=0

 

BENDING MOMENT(B.M). ANALYSIS:

B.M at A = 0

B.M at B= 0

B.M at C = 7 x 5 – 5 x 2 -1 x 2^2/2

                 = 35 – 10 -2 = +23 KNm

B.M at D= +7 x 3 = +21 KNm

B.M at E=+7+3= +21 KNm

 

S.F. and B.M. DIAGRAM IS GIVEN BELOW:

 


































1 Comments

  1. Best blog ever.i am doing civil engineering and i always cone to this blog for studying.Thanks civil engineering realities helping me out

    ReplyDelete

Post a Comment

Previous Post Next Post